Condensed Matter Theory Center

Friday, February 8 11:00 am – 12:30 pm, Physics Building 2205

Onur Erten The Ohio State University

"Double Perovskites:

From Half-Metals to Multi-orbital Mott Insulators"

Double perovskites (DPs) $A_2BB'O_6$ are two interpenetrating perovskites ABO₃ and AB'O₃ arranged on a 3D checkerboard lattice, with a wide range of properties. In this talk, I will focus on theoretical analysis of two DPs that show interesting magnetism well above room temperature.

First, I will discuss the half-metallic behavior of Sr_2FeMoO_6 which has a ferromagnetic $T_c = 420K$. I will derive a new effective Hamiltonian and present finite temperature calculations incorporating the effects of disorder, ubiquitous in these materials. I will conclude with a proposal to increase T_c without sacrificing spin polarization [1].

Second, I will focus on Sr_2CrOsO_6 , which has the highest $T_c = 720K$ among all perovskites with a net moment. I will derive a new Mott criterion for this multi-band material and argue that it is an insulator. I will show that the unusual magnetic properties of this material arise from frustrated exchange couplings, and its high T_c has its origins in an effective interaction arising from a combination of 3d and 5d transition metals [2].

Supported by the NSF-MRSEC grant DMR-0820414.

Work done in collaboration with O. N. Meetei, A. Mukherjee, M. Randeria, N. Trivedi, and P. Woodward [1] Phys. Rev. Lett. **107**, 257201 (2011); arXiv:1210.6689; arXiv:1210.6689.

[2] arXiv:1205.1811.

(All are welcome to attend)

